
Foundations of Quantum Programming

Lecture 4: Logic for Quantum Programs

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Quantum Predicates

Floyd-Hoare Logic for Quantum Programs

Outline

Quantum Predicates

Floyd-Hoare Logic for Quantum Programs

Quantum Predicates
I What is a quantum predicate?

I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates

I tr(Mρ) may be interpreted as the degree to which quantum state
ρ satisfies quantum predicate M.

I Let M be a Hermitian operator inH. The following statements
are equivalent:

1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!

I A quantum predicate in a Hilbert spaceH is a Hermitian operator
M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates

I tr(Mρ) may be interpreted as the degree to which quantum state
ρ satisfies quantum predicate M.

I Let M be a Hermitian operator inH. The following statements
are equivalent:

1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates

I tr(Mρ) may be interpreted as the degree to which quantum state
ρ satisfies quantum predicate M.

I Let M be a Hermitian operator inH. The following statements
are equivalent:

1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates

I tr(Mρ) may be interpreted as the degree to which quantum state
ρ satisfies quantum predicate M.

I Let M be a Hermitian operator inH. The following statements
are equivalent:

1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates
I tr(Mρ) may be interpreted as the degree to which quantum state

ρ satisfies quantum predicate M.

I Let M be a Hermitian operator inH. The following statements
are equivalent:

1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates
I tr(Mρ) may be interpreted as the degree to which quantum state

ρ satisfies quantum predicate M.
I Let M be a Hermitian operator inH. The following statements

are equivalent:

1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates
I tr(Mρ) may be interpreted as the degree to which quantum state

ρ satisfies quantum predicate M.
I Let M be a Hermitian operator inH. The following statements

are equivalent:
1. M ∈ P(H) is a quantum predicate.

2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates
I tr(Mρ) may be interpreted as the degree to which quantum state

ρ satisfies quantum predicate M.
I Let M be a Hermitian operator inH. The following statements

are equivalent:
1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.

3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Quantum Predicates
I What is a quantum predicate?
I A quantum predicate should be a physical observable!
I A quantum predicate in a Hilbert spaceH is a Hermitian operator

M inH with all its eigenvalues lying within the unit interval
[0, 1].

I The set of predicates inH is denoted P(H).

Satisfaction of Quantum Predicates
I tr(Mρ) may be interpreted as the degree to which quantum state

ρ satisfies quantum predicate M.
I Let M be a Hermitian operator inH. The following statements

are equivalent:
1. M ∈ P(H) is a quantum predicate.
2. 0H v M v IH.
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ inH.

Lemma
For any observables M, N, the following two statements are
equivalent:

1. M v N;
2. for all density operators ρ, tr(Mρ) ≤ tr(Nρ).

Lemma
The set (P(H),v) of quantum predicates with the Löwner partial
order is a complete partial order (CPO).

Lemma
For any observables M, N, the following two statements are
equivalent:

1. M v N;

2. for all density operators ρ, tr(Mρ) ≤ tr(Nρ).

Lemma
The set (P(H),v) of quantum predicates with the Löwner partial
order is a complete partial order (CPO).

Lemma
For any observables M, N, the following two statements are
equivalent:

1. M v N;
2. for all density operators ρ, tr(Mρ) ≤ tr(Nρ).

Lemma
The set (P(H),v) of quantum predicates with the Löwner partial
order is a complete partial order (CPO).

Quantum Preconditions
I Let M, N ∈ P(H) be quantum predicates, E ∈ QO(H) a

quantum operation. Then M is a precondition of N with respect to
E , written {M}E{N}, if

tr(Mρ) ≤ tr(NE(ρ))

for all density operators ρ inH.

I Intuition: a probabilistic version of the statement — if state ρ
satisfies predicate M, then the state after transformation E from ρ
satisfies predicate N.

Quantum Preconditions
I Let M, N ∈ P(H) be quantum predicates, E ∈ QO(H) a

quantum operation. Then M is a precondition of N with respect to
E , written {M}E{N}, if

tr(Mρ) ≤ tr(NE(ρ))

for all density operators ρ inH.
I Intuition: a probabilistic version of the statement — if state ρ

satisfies predicate M, then the state after transformation E from ρ
satisfies predicate N.

Quantum Weakest Preconditions
Let M ∈ P(H) be a quantum predicate, E ∈ QO(H) a quantum
operation. The weakest precondition of M with respect to E is a
quantum predicate wp(E)(M) satisfying:

1. {wp(E)(M)}E{M};

2. for all quantum predicates N, {N}E{M} implies N v wp(E)(M),
where v stands for the Löwner order.

Quantum Weakest Preconditions
Let M ∈ P(H) be a quantum predicate, E ∈ QO(H) a quantum
operation. The weakest precondition of M with respect to E is a
quantum predicate wp(E)(M) satisfying:

1. {wp(E)(M)}E{M};
2. for all quantum predicates N, {N}E{M} implies N v wp(E)(M),

where v stands for the Löwner order.

Characterisation of Quantum Weakest Preconditions —
Kraus Operators

Let quantum operation E ∈ QO(H) be represented by the set {Ei} of
operators:

E(ρ) = ∑
i

EiρE†
i

Then for each predicate M ∈ P(H):

wp(E)(M) = ∑
i

E†
i MEi.

Characterisation of Quantum Weakest Preconditions —
System-environment Model

If quantum operation E is given by

E(ρ) = trE

[
PU(|e0〉〈e0| ⊗ ρ)U†P

]
then:

wp(E)(M) = 〈e0|U†P(M⊗ IE)PU|e0〉

Schrödinger-Heisenberg Duality

I Denotational semantics E of a quantum program is a forward
state transformer:

E : D(H)→ D(H),
ρ 7→ E(ρ) for each ρ ∈ D(H)

I Weakest precondition defines a backward quantum predicate
transformer:

wp(E) : P(H)→ P(H),
M 7→ wp(E)(M) for each M ∈ P(M).

Schrödinger-Heisenberg Duality

I Denotational semantics E of a quantum program is a forward
state transformer:

E : D(H)→ D(H),
ρ 7→ E(ρ) for each ρ ∈ D(H)

I Weakest precondition defines a backward quantum predicate
transformer:

wp(E) : P(H)→ P(H),
M 7→ wp(E)(M) for each M ∈ P(M).

Schrödinger-Heisenberg Duality (Continued)

I Let E be a quantum operation mapping density operators to
themselves, E∗ an operator mapping Hermitian operators to
themselves. If for any density operator ρ, Hermitian operator M:

(Duality) tr[ME(ρ)] = tr[E∗(M)ρ]

then E and E∗ are (Schrödinger-Heisenberg) dual.

ρ |= E∗(M)

E ↓ ↑ E∗

E(ρ) |= M

I Any quantum operation E ∈ QO(H) and its weakest
precondition wp(E) are dual to each other.

Schrödinger-Heisenberg Duality (Continued)

I Let E be a quantum operation mapping density operators to
themselves, E∗ an operator mapping Hermitian operators to
themselves. If for any density operator ρ, Hermitian operator M:

(Duality) tr[ME(ρ)] = tr[E∗(M)ρ]

then E and E∗ are (Schrödinger-Heisenberg) dual.

ρ |= E∗(M)

E ↓ ↑ E∗

E(ρ) |= M

I Any quantum operation E ∈ QO(H) and its weakest
precondition wp(E) are dual to each other.

Basic Properties of Quantum Weakest Preconditions

Let λ ≥ 0, E ,F ∈ QO(H), let {En} be an increasing sequence in
QO(H).

1. wp(λE) = λwp(E) provided λE ∈ QO(H);

2. wp(E +F) = wp(E) + wp(F) provided E +F ∈ QO(H);
3. wp(E ◦ F) = wp(F) ◦wp(E);
4. wp (

⊔∞
n=0 En) =

⊔∞
n=0 wp(En), where

⊔∞
n=0 wp(En) is defined by(

∞⊔
n=0

wp(En)

)
(M)

4
=

∞⊔
n=0

wp(En)(M)

Basic Properties of Quantum Weakest Preconditions

Let λ ≥ 0, E ,F ∈ QO(H), let {En} be an increasing sequence in
QO(H).

1. wp(λE) = λwp(E) provided λE ∈ QO(H);
2. wp(E +F) = wp(E) + wp(F) provided E +F ∈ QO(H);

3. wp(E ◦ F) = wp(F) ◦wp(E);
4. wp (

⊔∞
n=0 En) =

⊔∞
n=0 wp(En), where

⊔∞
n=0 wp(En) is defined by(

∞⊔
n=0

wp(En)

)
(M)

4
=

∞⊔
n=0

wp(En)(M)

Basic Properties of Quantum Weakest Preconditions

Let λ ≥ 0, E ,F ∈ QO(H), let {En} be an increasing sequence in
QO(H).

1. wp(λE) = λwp(E) provided λE ∈ QO(H);
2. wp(E +F) = wp(E) + wp(F) provided E +F ∈ QO(H);
3. wp(E ◦ F) = wp(F) ◦wp(E);

4. wp (
⊔∞

n=0 En) =
⊔∞

n=0 wp(En), where
⊔∞

n=0 wp(En) is defined by(
∞⊔

n=0
wp(En)

)
(M)

4
=

∞⊔
n=0

wp(En)(M)

Basic Properties of Quantum Weakest Preconditions

Let λ ≥ 0, E ,F ∈ QO(H), let {En} be an increasing sequence in
QO(H).

1. wp(λE) = λwp(E) provided λE ∈ QO(H);
2. wp(E +F) = wp(E) + wp(F) provided E +F ∈ QO(H);
3. wp(E ◦ F) = wp(F) ◦wp(E);
4. wp (

⊔∞
n=0 En) =

⊔∞
n=0 wp(En), where

⊔∞
n=0 wp(En) is defined by(

∞⊔
n=0

wp(En)

)
(M)

4
=

∞⊔
n=0

wp(En)(M)

Outline

Quantum Predicates

Floyd-Hoare Logic for Quantum Programs

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:

I S is a quantum program;
I P, Q ∈ P(Hall) are quantum predicates inHall.
I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness

I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program;

I P, Q ∈ P(Hall) are quantum predicates inHall.
I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness

I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program;
I P, Q ∈ P(Hall) are quantum predicates inHall.

I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness

I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program;
I P, Q ∈ P(Hall) are quantum predicates inHall.
I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness

I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program;
I P, Q ∈ P(Hall) are quantum predicates inHall.
I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness
I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program;
I P, Q ∈ P(Hall) are quantum predicates inHall.
I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness
I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Correctness Formulas
I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program;
I P, Q ∈ P(Hall) are quantum predicates inHall.
I P is called the precondition, Q the postcondition.

Partial Correctness, Total Correctness
I Two interpretations of Hoare logical formula {P}S{Q}:

I Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.

I Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.

Partial Correctness, Total Correctness (Continued)
I The correctness formula {P}S{Q} is true in the sense of total

correctness, written
|=tot {P}S{Q},

if:
tr(Pρ) ≤ tr(Q~S�(ρ))

for all ρ ∈ D(Hall), where ~S� is the semantic function of S.

I The correctness formula {P}S{Q} is true in the sense of partial
correctness, written

|=par {P}S{Q},

if:
tr(Pρ) ≤ tr(Q~S�(ρ)) + [tr(ρ)− tr(~S�(ρ))]

for all ρ ∈ D(Hall).

Partial Correctness, Total Correctness (Continued)
I The correctness formula {P}S{Q} is true in the sense of total

correctness, written
|=tot {P}S{Q},

if:
tr(Pρ) ≤ tr(Q~S�(ρ))

for all ρ ∈ D(Hall), where ~S� is the semantic function of S.
I The correctness formula {P}S{Q} is true in the sense of partial

correctness, written
|=par {P}S{Q},

if:
tr(Pρ) ≤ tr(Q~S�(ρ)) + [tr(ρ)− tr(~S�(ρ))]

for all ρ ∈ D(Hall).

Basic Properties of Correctness

1. If |=tot {P}S{Q}, then |=par {P}S{Q}.

2. For any quantum program S, and for any P, Q ∈ P(Hall):

|=tot {0Hall}S{Q}, |=par {P}S{IHall}.

3. (Linearity) For any P1, P2, Q1, Q2 ∈ P(Hall) and λ1, λ2 ≥ 0 with
λ1P1 + λ2P2, λ1Q1 + λ2Q2 ∈ P(Hall), if

|=tot {Pi}S{Qi} (i = 1, 2),

then
|=tot {λ1P1 + λ2P2}S{λ1Q1 + λ2Q2}.

I The same conclusion holds for partial correctness if λ1 + λ2 = 1.

Basic Properties of Correctness

1. If |=tot {P}S{Q}, then |=par {P}S{Q}.
2. For any quantum program S, and for any P, Q ∈ P(Hall):

|=tot {0Hall}S{Q}, |=par {P}S{IHall}.

3. (Linearity) For any P1, P2, Q1, Q2 ∈ P(Hall) and λ1, λ2 ≥ 0 with
λ1P1 + λ2P2, λ1Q1 + λ2Q2 ∈ P(Hall), if

|=tot {Pi}S{Qi} (i = 1, 2),

then
|=tot {λ1P1 + λ2P2}S{λ1Q1 + λ2Q2}.

I The same conclusion holds for partial correctness if λ1 + λ2 = 1.

Basic Properties of Correctness

1. If |=tot {P}S{Q}, then |=par {P}S{Q}.
2. For any quantum program S, and for any P, Q ∈ P(Hall):

|=tot {0Hall}S{Q}, |=par {P}S{IHall}.

3. (Linearity) For any P1, P2, Q1, Q2 ∈ P(Hall) and λ1, λ2 ≥ 0 with
λ1P1 + λ2P2, λ1Q1 + λ2Q2 ∈ P(Hall), if

|=tot {Pi}S{Qi} (i = 1, 2),

then
|=tot {λ1P1 + λ2P2}S{λ1Q1 + λ2Q2}.

I The same conclusion holds for partial correctness if λ1 + λ2 = 1.

Basic Properties of Correctness

1. If |=tot {P}S{Q}, then |=par {P}S{Q}.
2. For any quantum program S, and for any P, Q ∈ P(Hall):

|=tot {0Hall}S{Q}, |=par {P}S{IHall}.

3. (Linearity) For any P1, P2, Q1, Q2 ∈ P(Hall) and λ1, λ2 ≥ 0 with
λ1P1 + λ2P2, λ1Q1 + λ2Q2 ∈ P(Hall), if

|=tot {Pi}S{Qi} (i = 1, 2),

then
|=tot {λ1P1 + λ2P2}S{λ1Q1 + λ2Q2}.

I The same conclusion holds for partial correctness if λ1 + λ2 = 1.

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.

1. The weakest precondition of S with respect to P is the quantum
predicate wp.S.P ∈ P(Hall) satisfying:

I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.

2. The weakest liberal precondition of S with respect to P is the
quantum predicate wlp.S.P ∈ P(Hall) satisfying:

I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:

I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.
2. The weakest liberal precondition of S with respect to P is the

quantum predicate wlp.S.P ∈ P(Hall) satisfying:

I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:
I |=tot {wp.S.P}S{P};

I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then
Q v wp.S.P.

2. The weakest liberal precondition of S with respect to P is the
quantum predicate wlp.S.P ∈ P(Hall) satisfying:

I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:
I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.

2. The weakest liberal precondition of S with respect to P is the
quantum predicate wlp.S.P ∈ P(Hall) satisfying:

I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:
I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.
2. The weakest liberal precondition of S with respect to P is the

quantum predicate wlp.S.P ∈ P(Hall) satisfying:

I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:
I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.
2. The weakest liberal precondition of S with respect to P is the

quantum predicate wlp.S.P ∈ P(Hall) satisfying:
I |=par {wlp.S.P}S{P};

I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then
Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:
I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.
2. The weakest liberal precondition of S with respect to P is the

quantum predicate wlp.S.P ∈ P(Hall) satisfying:
I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Weakest (Liberal) Preconditions of Quantum Programs
I Let S be a quantum while-program, P ∈ P(Hall) a quantum

predicate inHall.
1. The weakest precondition of S with respect to P is the quantum

predicate wp.S.P ∈ P(Hall) satisfying:
I |=tot {wp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P.
2. The weakest liberal precondition of S with respect to P is the

quantum predicate wlp.S.P ∈ P(Hall) satisfying:
I |=par {wlp.S.P}S{P};
I if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wlp.S.P.

I Equivalence of semantic and syntactic definitions:

wp.S.P = wp(~S�)(P).

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.

2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.
6. wp.while M[q] = 1 do S od.P =

⊔∞
n=0 Pn, where{

P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.
6. wp.while M[q] = 1 do S od.P =

⊔∞
n=0 Pn, where{

P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.
6. wp.while M[q] = 1 do S od.P =

⊔∞
n=0 Pn, where{

P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.
6. wp.while M[q] = 1 do S od.P =

⊔∞
n=0 Pn, where{

P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.

4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.
6. wp.while M[q] = 1 do S od.P =

⊔∞
n=0 Pn, where{

P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).

5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†
m(wp.Sm.P)Mm.

6. wp.while M[q] = 1 do S od.P =
⊔∞

n=0 Pn, where{
P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.

6. wp.while M[q] = 1 do S od.P =
⊔∞

n=0 Pn, where{
P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Preconditions

1. wp.skip.P = P.
2.

I If type(q) = Boolean, then

wp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wp.q := U[q].P = U†PU.
4. wp.S1; S2.P = wp.S1.(wp.S2.P).
5. wp.if (�m ·M[q] = m→ Sm) fi.P = ∑m M†

m(wp.Sm.P)Mm.
6. wp.while M[q] = 1 do S od.P =

⊔∞
n=0 Pn, where{

P0 = 0Hall ,
Pn+1 = M†

0PM0 + M†
1(wp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.

2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.
6. wlp.while M[q] = 1 do S od.P =

�∞
n=0 Pn, where{

P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.
6. wlp.while M[q] = 1 do S od.P =

�∞
n=0 Pn, where{

P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.
6. wlp.while M[q] = 1 do S od.P =

�∞
n=0 Pn, where{

P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.
6. wlp.while M[q] = 1 do S od.P =

�∞
n=0 Pn, where{

P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.

4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.
6. wlp.while M[q] = 1 do S od.P =

�∞
n=0 Pn, where{

P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).

5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†
m(wlp.Sm.P)Mm.

6. wlp.while M[q] = 1 do S od.P =
�∞

n=0 Pn, where{
P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.

6. wlp.while M[q] = 1 do S od.P =
�∞

n=0 Pn, where{
P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

I If type(q) = Boolean, then

wlp.q := |0〉.P = |0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|.

I If type(q) = integer, then

wlp.q := |0〉.P =
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|.

3. wlp.q := U[q].P = U†PU.
4. wlp.S1; S2.P = wlp.S1.(wlp.S2.P).
5. wlp.if (�m ·M[q] := m→ Sm) fi.P = ∑m M†

m(wlp.Sm.P)Mm.
6. wlp.while M[q] = 1 do S od.P =

�∞
n=0 Pn, where{

P0 = IHall ,
Pn+1 = M†

0PM0 + M†
1(wlp.S.Pn)M1 for all n ≥ 0.

Trace-Preserving Property
For any quantum while-program S, for any quantum predicate
P ∈ P(Hall), and for any partial density operator ρ ∈ D(Hall):

tr((wp.S.P)ρ) = tr(P~S�(ρ)).

tr((wlp.S.P)ρ) = tr(P~S�(ρ)) + [tr(ρ)− tr(~S�(ρ)].

Fixed Point Characterisation
Write while for quantum loop “while M[q] = 1 do S od”. Then for
any P ∈ P(Hall):

1. wp.while.P = M†
0PM0 + M†

1(wp.S.(wp.while.P))M1.

2. wlp.while.P = M†
0PM0 + M†

1(wlp.S.(wlp.while.P))M1.

Trace-Preserving Property
For any quantum while-program S, for any quantum predicate
P ∈ P(Hall), and for any partial density operator ρ ∈ D(Hall):

tr((wp.S.P)ρ) = tr(P~S�(ρ)).

tr((wlp.S.P)ρ) = tr(P~S�(ρ)) + [tr(ρ)− tr(~S�(ρ)].

Fixed Point Characterisation
Write while for quantum loop “while M[q] = 1 do S od”. Then for
any P ∈ P(Hall):

1. wp.while.P = M†
0PM0 + M†

1(wp.S.(wp.while.P))M1.

2. wlp.while.P = M†
0PM0 + M†

1(wlp.S.(wlp.while.P))M1.

Proof System for Partial Correctness

(Ax− Sk) {P}Skip{P}

(Ax− In) If type(q) = Boolean, then

{|0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|}q := |0〉{P}

If type(q) = integer, then

{
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|
}

q := |0〉{P}

(Ax−UT) {U†PU}q := Uq{P}

Proof System for Partial Correctness (Continued)

(R− SC)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(R− IF)
{Pm}Sm{Q} for all m{

∑m M†
mPmMm

}
if (�m ·M[q] = m→ Sm) fi{Q}

(R− LP)
{Q}S

{
M†

0PM0 + M†
1QM1

}
{M†

0PM0 + M†
1QM1}while M[q] = 1 do S od{P}

(R−Or)
P v P′ {P′}S{Q′} Q′ v Q

{P}S{Q}

Soundness Theorem
For any quantum while-program S and quantum predicates
P, Q ∈ P(Hall):

`qPD {P}S{Q} implies |=par {P}S{Q}.

(Relative) Completeness Theorem
For any quantum while-program S and quantum predicates
P, Q ∈ P(Hall):

|=par {P}S{Q} implies `qPD {P}S{Q}.

Soundness Theorem
For any quantum while-program S and quantum predicates
P, Q ∈ P(Hall):

`qPD {P}S{Q} implies |=par {P}S{Q}.

(Relative) Completeness Theorem
For any quantum while-program S and quantum predicates
P, Q ∈ P(Hall):

|=par {P}S{Q} implies `qPD {P}S{Q}.

Bound (Ranking) Functions

I Let P ∈ P(Hall) be a quantum predicate, real number ε > 0.

I A function
t : D(Hall)→ ω

is a (P, ε)-bound function of quantum loop

while M[q] = 1 do S od

if for all ρ ∈ D(Hall):

1. t
(
~S�

(
M1ρM†

1
))
≤ t(ρ);

2. tr(Pρ) ≥ ε implies

t
(
~S�

(
M1ρM†

1

))
< t(ρ)

Bound (Ranking) Functions

I Let P ∈ P(Hall) be a quantum predicate, real number ε > 0.
I A function

t : D(Hall)→ ω

is a (P, ε)-bound function of quantum loop

while M[q] = 1 do S od

if for all ρ ∈ D(Hall):

1. t
(
~S�

(
M1ρM†

1
))
≤ t(ρ);

2. tr(Pρ) ≥ ε implies

t
(
~S�

(
M1ρM†

1

))
< t(ρ)

Bound (Ranking) Functions

I Let P ∈ P(Hall) be a quantum predicate, real number ε > 0.
I A function

t : D(Hall)→ ω

is a (P, ε)-bound function of quantum loop

while M[q] = 1 do S od

if for all ρ ∈ D(Hall):
1. t

(
~S�

(
M1ρM†

1
))
≤ t(ρ);

2. tr(Pρ) ≥ ε implies

t
(
~S�

(
M1ρM†

1

))
< t(ρ)

Bound (Ranking) Functions

I Let P ∈ P(Hall) be a quantum predicate, real number ε > 0.
I A function

t : D(Hall)→ ω

is a (P, ε)-bound function of quantum loop

while M[q] = 1 do S od

if for all ρ ∈ D(Hall):
1. t

(
~S�

(
M1ρM†

1
))
≤ t(ρ);

2. tr(Pρ) ≥ ε implies

t
(
~S�

(
M1ρM†

1

))
< t(ρ)

Characterisation of Bound Functions

The following two statements are equivalent:
1. for any ε > 0, there exists a (P, ε)-bound function tε of the

while-loop “while M[q] = 1 do S od”;

2. limn→∞ tr (P(~S� ◦ E1)
n(ρ)) = 0 for all ρ ∈ D(Hall).

Characterisation of Bound Functions

The following two statements are equivalent:
1. for any ε > 0, there exists a (P, ε)-bound function tε of the

while-loop “while M[q] = 1 do S od”;
2. limn→∞ tr (P(~S� ◦ E1)

n(ρ)) = 0 for all ρ ∈ D(Hall).

Proof System for Total Correctness

(R− LT)

• {Q}S{M†
0PM0 + M†

1QM1}
• for any ε > 0, tε is a (M†

1QM1, ε)− bound function
of loop while M[q] = 1 do S od
{M†

0PM0 + M†
1QM1}while M[q] = 1 do S od{P}

Soundness Theorem
For any quantum program S and quantum predicates P, Q ∈ P(Hall):

`qTD {P}S{Q} implies |=tot {P}S{Q}.

(Relative) Completeness Theorem
For any quantum program S and quantum predicates P, Q ∈ P(Hall):

|=tot {P}S{Q} implies `qTD {P}S{Q}.

Soundness Theorem
For any quantum program S and quantum predicates P, Q ∈ P(Hall):

`qTD {P}S{Q} implies |=tot {P}S{Q}.

(Relative) Completeness Theorem
For any quantum program S and quantum predicates P, Q ∈ P(Hall):

|=tot {P}S{Q} implies `qTD {P}S{Q}.

	Quantum Predicates
	Floyd-Hoare Logic for Quantum Programs

